首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11083篇
  免费   1149篇
  国内免费   1775篇
化学   5307篇
晶体学   150篇
力学   1952篇
综合类   167篇
数学   3728篇
物理学   2703篇
  2024年   18篇
  2023年   124篇
  2022年   195篇
  2021年   242篇
  2020年   359篇
  2019年   320篇
  2018年   313篇
  2017年   423篇
  2016年   422篇
  2015年   334篇
  2014年   497篇
  2013年   813篇
  2012年   503篇
  2011年   608篇
  2010年   527篇
  2009年   597篇
  2008年   737篇
  2007年   759篇
  2006年   694篇
  2005年   668篇
  2004年   518篇
  2003年   508篇
  2002年   536篇
  2001年   439篇
  2000年   363篇
  1999年   321篇
  1998年   325篇
  1997年   251篇
  1996年   238篇
  1995年   219篇
  1994年   177篇
  1993年   164篇
  1992年   121篇
  1991年   105篇
  1990年   67篇
  1989年   57篇
  1988年   51篇
  1987年   54篇
  1986年   52篇
  1985年   47篇
  1984年   37篇
  1983年   18篇
  1982年   37篇
  1981年   41篇
  1980年   23篇
  1979年   29篇
  1978年   20篇
  1977年   7篇
  1976年   9篇
  1973年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
4D printing is an exciting branch of additive manufacturing. It relies on established 3D printing techniques to fabricate objects in much the same way. However, structures which fall into the 4D printed category have the ability to change with time, hence the “extra dimension.” The common perception of 4D printed objects is that of macroscopic single-material structures limited to point-to-point shape change only, in response to either heat or water. However, in the area of polymer 4D printing, recent advancements challenge this understanding. A host of new polymeric materials have been designed which display a variety of wonderful effects brought about by unconventional stimuli, and advanced additive manufacturing techniques have been developed to accommodate them. As a result, the horizons of polymer 4D printing have been broadened beyond what was initially thought possible. In this review, we showcase the many studies which evolve the very definition of polymer 4D printing, and reveal emerging areas of research integral to its advancement.  相似文献   
2.
In the pursuit to enlarge the library of polyimide materials for energy applications, new polyimide/MWCNTs composite films have been developed by MWCNTs-assisted polycondensation reaction of a hydroxyl and triphenylmethane-containing diamine with benzophenone tetracarboxylic dianhydride targeting to highlight their electrical storage capability as flexible electrodes in micro-supercapacitors (mSCs). The Fourier-transform infrared spectroscopy, proton nuclear magnetic resonance, UV–vis, fluorescence, and Raman spectroscopies were used to demonstrate the evolution of interfacial interactions between MWCNTs and the precursors (diamine monomer and intermediate polyamidic acid) and polyimide matrix that proved to be the origin of MWCNTs homogeneous dispersion. Thus, composite films incorporating 1, 3, 5, and 10 w.t.% MWCNTs were obtained and thoroughly investigated with regard to their morphology, mechanical behavior, thermal stability, and electrical conductivity. The electrochemical performance of these composites was first analyzed in a classical three-electrode cell by cyclic voltammetry and galvanostatic charge-discharge in both aqueous and organic electrolyte systems. By far, the best electrical storage capacity was obtained with the composite polyimide film containing 10% MWCNTs that was further used as both active material and current collector in a flexible symmetric mSC realized by a straightforward and low-cost procedure. In the attempt to better exploit the advantages of this composite film, it was layered with a graphite-containing paint and tested as an electrode in a flexible mSC, which provided satisfactory results. To our knowledge, this is the first report on the electrical charge storage capability of a polyimide/MWCNTs free-standing film as a flexible electrode in mSCs, which do not require time- and resource-consuming processing steps.  相似文献   
3.
The designs of efficient and inexpensive Pt-based catalysts for methanol oxidation reaction (MOR) are essential to boost the commercialization of direct methanol fuel cells. Here, the highly catalytic performance PtFe alloys supported on multiwalled carbon nanotubes (MWCNTs) decorating nitrogen-doped carbon (NC) have been successfully prepared via co-engineering of the surface composition and electronic structure. The Pt1Fe3@NC/MWCNTs catalyst with moderate Fe3+ feeding content (0.86 mA/mgPt) exhibits 2.26-fold enhancement in MOR mass activity compared to pristine Pt/C catalyst (0.38 mA/mgPt). Furthermore, the CO oxidation initial potential of Pt1Fe3@NC/MWCNTs catalyst is lower relative to Pt/C catalyst (0.71 V and 0.80 V). Benefited from the optimal surface compositions, the anti-corrosion ability of MWCNT, strong electron interaction between PtFe alloys and MWCNTs and the N-doped carbon (NC) layer, the Pt1Fe3@NC/MWCNTs catalyst presents an improved MOR performance and anti-CO poisoning ability. This study would open up new perspective for designing efficient electrocatalysts for the DMFCs field.  相似文献   
4.
The minimum k-enclosing ball problem seeks the ball with smallest radius that contains at least k of m given points. This problem is NP-hard. We present a branch-and-bound algorithm on the tree of the subsets of k points to solve this problem. Our method is able to solve the problem exactly in a short amount of time for small and medium sized datasets.  相似文献   
5.
The development of high‐surface‐area carbon electrodes with a defined pore size distribution and the incorporation of pseudo‐active materials to optimize the overall capacitance and conductivity without destroying the stability are at present important research areas. Composite electrodes of carbon nano‐onions (CNOs) and polypyrrole (Ppy) were fabricated to improve the specific capacitance of a supercapacitor. The carbon nanostructures were uniformly coated with Ppy by chemical polymerization or by electrochemical potentiostatic deposition to form homogenous composites or bilayers. The materials were characterized by transmission‐ and scanning electron microscopy, differential thermogravimetric analyses, FTIR spectroscopy, piezoelectric microgravimetry, and cyclic voltammetry. The composites show higher mechanical and electrochemical stabilities, with high specific capacitances of up to about 800 F g?1 for the CNOs/SDS/Ppy composites (chemical synthesis) and about 1300 F g?1 for the CNOs/Ppy bilayer (electrochemical deposition).  相似文献   
6.
7.
Exposure of cimetidine (CIM) to dry heat (160–180 °C) afforded, upon cooling, a glassy solid containing new and hitherto unknown products. The kinetics of this process was studied by a second order chemometrics-assisted multi-spectroscopic approach. Proton and carbon-13 nuclear magnetic resonance (NMR), as well as ultraviolet and infrared spectroscopic data were jointly used, whereas multivariate curve resolution with alternating least squares (MCR-ALS) was employed as the chemometrics method to extract process information. It was established that drug degradation follows a first order kinetics.  相似文献   
8.
Motor Imagery Electroencephalography (MI-EEG) has shown good prospects in neurorehabilitation, and the entropy-based nonlinear dynamic methods have been successfully applied to feature extraction of MI-EEG. Especially based on Multiscale Fuzzy Entropy (MFE), the fuzzy entropies of the τ coarse-grained sequences in τ scale are calculated and averaged to develop the Composite MFE (CMFE) with more feature information. However, the coarse-grained process fails to match the nonstationary characteristic of MI-EEG by a mean filtering algorithm. In this paper, CMFE is improved by assigning the different weight factors to the different sample points in the coarse-grained process, i.e., using the weighted mean filters instead of the original mean filters, which is conductive to signal filtering and feature extraction, and the resulting personalized Weighted CMFE (WCMFE) is more suitable to represent the nonstationary MI-EEG for different subjects. All the WCMFEs of multi-channel MI-EEG are fused in serial to construct the feature vector, which is evaluated by a back-propagation neural network. Based on a public dataset, extensive experiments are conducted, yielding a relatively higher classification accuracy by WCMFE, and the statistical significance is examined by two-sample t-test. The results suggest that WCMFE is superior to the other entropy-based and traditional feature extraction methods.  相似文献   
9.
We give a sheaf theoretic interpretation of Potts models with external magnetic field, in terms of constructible sheaves and their Euler characteristics. We show that the polynomial countability question for the hypersurfaces defined by the vanishing of the partition function is affected by changes in the magnetic field: elementary examples suffice to see non-polynomially countable cases that become polynomially countable after a perturbation of the magnetic field. The same recursive formula for the Grothendieck classes, under edge-doubling operations, holds as in the case without magnetic field, but the closed formulae for specific examples like banana graphs differ in the presence of magnetic field. We give examples of computation of the Euler characteristic with compact support, for the set of real zeros, and find a similar exponential growth with the size of the graph. This can be viewed as a measure of topological and algorithmic complexity. We also consider the computational complexity question for evaluations of the polynomial, and show both tractable and NP-hard examples, using dynamic programming.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号